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Abstract

As the global burden of antibiotic resistance continues to grow, creative approaches

to antibiotic discovery are needed to accelerate the development of novel medicines.

A rapidly progressing computational revolution—artificial intelligence—offers an opti-

mistic path forward due to its ability to alleviate bottlenecks in the antibiotic discovery

pipeline. In this review, we discuss how advancements in artificial intelligence are rein-

vigorating the adoption of past antibiotic discovery models—namely natural product

exploration and small molecule screening. We then explore the application of con-

temporary machine learning approaches to emerging areas of antibiotic discovery,

including antibacterial systems biology, drug combination development, antimicrobial

peptide discovery, and mechanism of action prediction. Lastly, we propose a call to

action for open access of high-quality screening datasets and interdisciplinary collabo-

ration to accelerate the rate at whichmachine learning models can be trained and new

antibiotic drugs can be developed.
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INTRODUCTION

In 2019, antibiotic-resistant infections were estimated to have con-

tributed to 4.95 million deaths worldwide,1 a number that is expected

to increase to 10 million deaths per year by 2050 without immedi-

ate productivity in discovering new antibiotics.2 Worryingly, the global

dissemination of antibiotic resistance is exacerbated by an alarmingly

lean antibiotic development pipeline. Of the 45 antibacterial com-

pounds in clinical development as of November 2021, only six of them

are both (1) active against the World Health Organization’s (WHO)

priority pathogens and (2) considered innovative as defined by the

WHO’s innovation criteria—no known cross-resistance, novel target,

a novel mode of action, and/or novel class.3 A major contributor to

this innovation gap is a lack of economic incentives to motivate antibi-

otic research and development by large pharmaceutical companies.4

As a result, the responsibility has largely been placed on academic lab-

oratories and small biotechnology enterprises to fulfill the discovery

andpreclinical stagesof theantibiotic developmentpipeline—including

hit identification, mechanism of action (MOA) elucidation, and hit-to-

lead medicinal chemistry efforts. Unfortunately, these early stages are

often costly, laborious, and characterized by a high attrition rate. For

instance, from 2011 to 2020, there was only an ∼16% FDA approval

rate for antibacterial compounds in phase I clinical trials.5 Moreover,

the cost of developing an antibiotic is an estimated $1.5 billion;6 how-

ever, this expense is rarely recuperated. In 2018, the cephalosporin

antibiotic ceftaroline was the highest-selling antibiotic in the United

States, generating $138 million in revenue. In contrast, the most prof-

itable nonantimicrobial drug earned $13.68 billion in the same year.7

The unsustainability of the current antibiotic drug discovery paradigm

is especially evident in the failure of the biotechnology firm Achaogen,

which filed for bankruptcy in 2019 despite the FDA approval of their

antibiotic, plazomicin—an aminoglycoside developed for the treatment

of multidrug-resistant Enterobacteriaceae urinary tract infections.8

Despite continuous and rapid advancements in genomics, labora-

tory automation, and synthetic chemistry methods, we have failed to

translate these into novel antibiotics for clinical use9—a phenomenon

appropriately termed the “knowledge paradox.”10 We posit that this is,

in part, because we are underexploiting the dense, multidimensional

datasets11 that are commonly generated during the large screen-

ing campaigns associated with modern drug discovery programs.12

Ann NY Acad Sci. 2022;1–20. © 2022NewYork Academy of Sciences. 1wileyonlinelibrary.com/journal/nyas
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Such datasets are typically manually analyzed to shortlist hit chemi-

cals for downstream analysis, but their size and complexity makes it

difficult to observe and rationalize the latent relationships between

bacterial physiological and chemical perturbation.13 For reference,

modern techniques to profile antibiotic stress allow for the collection

of chemical–genetic interactions and biomass measurements across

hundreds of time points.14 Indeed, one chemogenomic study15 col-

lected nearly 20million observations for 15 antibiotics against a library

of ∼4000 nonessential single-gene deletion Escherichia colimutants.16

Datasets of this scale are challenging to interpret, requiring sophisti-

cated approaches to maximize the utility of such large-scale data and

translate these into new antibiotics.

A promising approach is the application of machine learning (ML)

techniques to antibiotic discovery. ML methods have rapidly grown

in popularity within many scientific disciplines—other fields of drug

discovery included—where they have shown utility in relieving bottle-

necks within the preclinical and clinical development pipelines.17–19

Indeed, ML is emerging as a powerful and cost-effective tool that

pharmaceutical companies have recently adopted in their own drug

discovery efforts. For example, Roche and Genentech are collaborat-

ing with Recursion Pharmaceuticals to help accelerate their research

into neuroscience and oncology therapies. Novartis has partneredwith

Microsoft to establish an artificial intelligence innovation lab with the

goal of accelerating its molecular design and personalized therapy pro-

grams. Sanofi has entered into a partnership worth up to $5.2 billion

with Exscientia to develop new drugs for oncology and immunology

using artificial intelligence, among numerous other examples.20 How-

ever, ML approaches have yet to be broadly implemented in antibiotics

research, which is detrimental to the field since these methods are

well suited to accelerate the antibiotic discovery pipeline21—for exam-

ple, by enabling the rapid exploration of vast chemical and sequence

spaces22—thereby increasing the likelihood of discovering novel struc-

tural and functional classes of antibiotics, while decreasing associated

costs.

Despite the promise of ML in antibiotic discovery, we must remem-

ber that ML is not a panacea. Antibiotic drug discovery is a chal-

lenging endeavor that involves the complex physiologies of both

humans and bacteria; it requires a molecule to be optimized for

multiple properties, such as low cytotoxicity, favorable pharmacokinet-

ics/pharmacodynamics (PK/PD), and high potency against a pathogen

of interest. As such, ML approaches require large, high-quality wet

lab datasets on which to train23 and sufficient computational fluency

to implement the correct algorithms in the correct manner. It is diffi-

cult to ignore the similarities between ML in drug discovery and the

genomics era of antibiotic discovery, the latter of which saw the intro-

duction of high-throughput screening methods and recombinant DNA

technology. This period failed to develop viable clinical antibiotics24

in part due to diminishing investment in the later stages of drug

development,24,25 but also due to the reductionist nature of the empir-

ical methods used to identify hit compounds. Similarly, ML approaches

should not be used without deep consideration; the success of ML

methods relies on their appropriate implementation to enhance—not

necessarily replace—current methods.

In this review, we explore the evolution of dominant antibiotic dis-

covery approaches since thebeginningof the20th century, highlighting

how technological advancements were instrumental to our successes

in novel antibiotic discovery, and how ML approaches may augment

each antibiotic discovery technology to help us more rapidly discover

novel drugs (Figure1).Wewill first describehowMLapproaches canbe

used to augment natural product (NP) discovery. Next, we will discuss

the application of ML in expanding the chemical search space in novel

small-molecule antibiotic discovery. Third, we will discuss the various

emerging applicationsofML inunconventional antibiotic discovery and

development. Lastly, we will conclude the paper with a call to action

for more open data sharing and increased multidisciplinary collabo-

ration toward the development of high-quality datasets and robust

ML models that are shared among the global community of antibiotic

discoverers.

ML CONCEPTS IN A NUTSHELL

ML is an algorithmic approach to building predictive models that are

representative of a given dataset. ML models refine themselves in an

automated manner by measuring their own predictive performance

against a training dataset and optimizing their parameters accordingly.

This is the process of “learning.” ML approaches are being devel-

oped for a wide variety of tasks in drug discovery, including molecular

property prediction,26 small molecule design,27 MOA elucidation,28

image-based profiling,29 and target identification.30 The appropriate

use of ML approaches requires a detailed understanding of the spe-

cific goals of a prediction task, as well as the datasets on which to train

the ML models. Indeed, these fundamental considerations help deter-

mine how the data will be processed, which ML model architectures

should be considered, and how to evaluate model performance for

downstream real-world applications. In this section, we provide a brief

overviewof these three considerations.Wedirect readers to additional

thorough guides for further studying.31–33

Data preprocessing

The performance ofMLmodels can be continuously improved through

providing larger quantities of training data, as well as optimizing the

parameters of a chosen model architecture. Of course, extreme care

must be exercised in collecting a large quantity of high-quality data

to ensure the model can make accurate predictions when applied to

real-world tasks. In the context of chemical screens, for example, raw

screening data must be encoded as a vector representation for input

into the model (Figure 2A). The model will then learn features of the

input data (chemical structure or amino acid sequence) in the context

of the measurement on which it is being trained (growth inhibition of a

bacterium of interest). In practice, compound bioactivity (e.g., growth

inhibition) is often binarized such that all molecules with bioactivity

above a certain threshold are labeled as 1 and those with bioactivity

below the threshold as 0 (see Ref. 34), although regression models can
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 3

F IGURE 1 Timeline of major antibiotic discovery approaches. The golden era was a successful period defined bywhole-cell screens of
secondarymetabolites produced by soil-dwelling microbes; it was largely abandoned due to the rediscovery problem. Themedicinal chemistry era
focused onmodifying existing antibiotics to optimize their medicinal and antibacterial properties. In the genomic era, a focus on target-based
in vitro screens failed to identify any new clinical antibiotics. Modern approaches to antibiotic discovery include an array of unique approaches,
with this diversification reflecting a newfound appreciation for antibiotic function in the context of the whole cell and the host infection
environment.Within the next decade, end-to-end integration ofML algorithms into existing antibiotic discovery techniquesmay have the
potential to accelerate antibiotic development.

(A)

(B)

(C)

(D)

F IGURE 2 Overview ofmachine learning concepts. (A) Vectorized representations of data relevant to antibiotic discovery research.Molecular
structures can be converted to vector representations using graph neural networks (left). One-hot encodingmaps each character of a sequence
(amino acids or nucleotides) onto a value of 0 or 1 (middle). Feature profiles can be constructed from a variety of different readouts, such as raw
pixel intensity from bacterial micrographs or from holistic omics analyses (right). Desired chemical properties can be binarized. Here, growth
inhibition is labeled as 1 and no growth inhibition is labeled as 0. (B) Commonly used supervisedmachine learningmodels include support vector
machines (SVMs) and random forest models (RFs) (left). Commonly used unsupervised learningmodels include k-means clustering and
t-distributed stochastic neighbor embedding (t-SNE) (middle). DLmodels are a subclass ofML that use neural networks to learn. Depicted are two
commonly usedmodels, a feed-forward neural network and a convolutional neural network (right). Convolutional neural networks (CNNs) are
unique in that they can be usedwith images; images are first analyzed as raw pixel intensity, then transformed into a vector after a series of
alternating convolutional and pooling steps. (C) A labeled dataset is partitioned into a training set, a validation set, and a test set. Themodel
parameters are learned during training and themodel is further hyperparameter-tuned during the validation stage. Proper tuning ensures optimal
fit of the data, improving the likelihood that themodel will generalize to new input data. (D)Model performance is evaluated usingmetrics, such as
accuracy, precision, and recall, which are calculated from the number of true and false predictions organized by a confusionmatrix. Receiver
operating curves (ROCs), which plot the true positive rate against the false positive rate, and precision-recall (PR) curves, which plot precision
against the recall, are commonly used to evaluatemodel performance. A perfectly performingmodel has an AUC-ROC of 1.0. Illustrated is a
progression of AUC-ROCwith improving performance (gray being the worst performance and green being the best performance).
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4 ANNALSOF THENEWYORKACADEMYOF SCIENCES

be applied if sufficient quantities of data are available. For binariza-

tion tasks, the threshold is defined by the researcher to appropriately

select for a desired property. For instance, bacterial growth inhibition

can bemeasured by optical density, with compounds resulting in>80%

growth inhibition being defined as growth inhibitory (labeled 1) and

compounds resulting in<80% growth inhibition defined as not growth

inhibitory (labeled 0). The model can then predict a novel molecule

not seen during training as potentially bioactive (prediction values

approaching 1) or potentially not (prediction values approaching 0).

It is up to the researcher to determine how to interpret the model

prediction scores based on the specific task.

As a concrete example, Liu et al.35 developed a message-passing

deep neural network (MPNN) to predict the growth inhibition prop-

erties of molecules against Mycobacterium tuberculosis. An MPNN

automatically transforms the graph structure of a molecule into a

continuous vector. The authors trained their model on the inhibitory

activity of ∼50,000 chemicals against 152 M. tuberculosis mutant

strains. Growth inhibition was represented as a Z-score of the natu-

ral log fold change of the mutants relative to their growth in a control

solvent andbinarizedusinga calculated thresholdof−4, such that com-

pounds with inhibitory activity (a Z-score less than or equal to −4)

were labeled as 1 and compounds with no activity (a Z-score greater

than −4) were labeled as 0. This trained model then successfully pre-

dicted the activities of an external set of 44 compounds against their

intracellular targets inM. tuberculosis.

Where Liu et al. leveraged a message-passing architecture for

molecular property prediction, Richter et al.36 trained a random for-

est (RF) model to predict compound accumulation in E. coli. An RF37

(Figure 2B) is a multiclass classifier that models every possible event

and the associated outcome as branches, then uses learned condi-

tional rules to draw a path down the branches to a final prediction.

The authors trained their RF model on the intracellular accumula-

tion data of 68 chemicals, quantified using liquid chromatography

with tandem mass spectroscopy. Each compound was represented

by a vector containing 297 fixed molecular descriptors that defined

physicochemical features, such as rotatable bonds and globular-

ity. Their model predicted that accumulation may be dictated by

the presence of primary amines, high rigidity, and low globularity.

The authors then used this prediction to develop a broad-spectrum

analog of deoxynybomycin, a Gram-positive–specific antibacterial

molecule.

Where these two examples dealt with vector representations of

small molecules from chemical libraries, we emphasize that a wide

array of data types are generated during empirical screening, and

there are multiple ways a single type of data can be encoded. For

instance, sequences (nucleotide and amino acid sequences) can be

transformed into a vector using a one-hot encoding that numerically

represents each character of a sequence as its own vector.38,39 For

example, in a genome sequence, the nucleotides can be encoded as

A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], and T = [0,0,0,1], where the

position of 1 indicates the associated nucleotide.40 Moreover, images

(e.g., bacterial micrographs) can be analyzed as raw pixel intensity,

then transformed into a vector after a series of alternating convolu-

tional and pooling steps using a convolutional neural network (CNN;

Figure 2B). This process is used to extract the most pertinent features

from an input image.41 Indeed, antibacterial research is diverse, so

the “best” data representation is dependent on your specific scientific

question.

Model selection

ML algorithms can generally be classified as supervised, unsupervised,

or reinforcement learningmodels (Figure 2B)—weare focusing here on

the first two. Supervised learningmodels use labeled datasets for train-

ing and learn associations between each input (chemical structure)

and their known output (growth inhibition) using regression (for con-

tinuous prediction tasks) or classification (for discrete or categorical

prediction tasks). Commonly used classical supervised learningmodels

include RFs, which we briefly described above, and support vector

machines (SVMs)42 (Figure2B). AnSVMis abinary classifier that learns

to best separate points of a dataset into two classes using a hyperplane,

termed the “decision boundary.” A hyperplane is a separating boundary

and has one less dimension than that of the data feature space. For

example, if the feature space is two-dimensional, the hyperplanewill be

a one-dimensional line. In contrast to supervisedmodels, unsupervised

models are used to identify patterns in unlabeled data. Here, inputs

are presented with no labeled output and the model attempts to learn

the features of the dataset automatically. These models are often used

to cluster data for similarity analyses (Figure 2B), for example, using

k-means clustering, which partitions a dataset into k clusters based on

the distance of each datapoint to a center point. Unsupervised learn-

ing can also be used for dimensionality reduction (Figure 2B) using

principal component analysis,43 which preserves the most pertinent

global features of the dataset by maximizing the variation between

the datapoints, or t-distributed stochastic neighbor embedding,43

which is used to project high-dimensional data onto lower-

dimensional space while maintaining local relationships within the

dataset.

A subset of ML is deep learning (DL), which applies neural networks

to learn (Figure 2B). At a minimum, neural networks have three lay-

ers: an input layer, which takes in data that is encoded as a vector; a

hidden layer, which extracts features from the input layer; and an out-

put layer, which outputs the prediction(s) defined by the user. At a high

level, the connections between the nodes of each layer represent the

model’s parameters, or “weights,” which are optimized during training.

Overall, DL tends to be reserved for larger datasets, since it is ideally

suited to learn complex relationships among many input and output

values. Though a wide array of different neural network architectures

exist, some of the most common for the scope of this review include

feed-forward neural networks (FFNNs), which are general predictive

algorithms44 that have broad applicability, and CNNs, which work spa-

tially and are typically used with image datasets45 for various image

classification tasks.
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Training, validating, and testing a model

Training is the process through which model parameters are learned

with thegoal of outputting themost accuratepredictions for thewidest

array of inputs. Typically, a given labeled dataset is partitioned into

a training set (∼80% of the labeled dataset), a validation set (∼10%

of the labeled dataset), and a test set (∼10% of the labeled dataset)

(Figure 2C). Separate sets for validation and testing are used to mon-

itor a model’s predictive accuracy without directly contributing to the

training process. This ensures that the model is not learning param-

eters specific to a single dataset, thereby improving its ability to

generalize to new input data not seen during training.

ML algorithms learn by minimizing a loss function—minimizing the

difference between a predicted value for some input and the true

value—and optimizing model parameters accordingly. In the context

of a DL model, at the onset of training, the neural network will first

compute an output value based on the initialized weights (the weights

are initialized as random values) in the “forward pass” phase. Once the

output is computed, the model will calculate the error (the difference

between the predicted output value and the true value), then propa-

gate this error backward through the model to adjust each weight in a

process termed “backpropagation.” Themodel will iterate through this

algorithm a user-defined number of times until the error—or loss—is

minimized. Subsequently, the ML model will be evaluated by perform-

ing predictions on the validation set, which provides an opportunity to

optimize the model’s hyperparameters for further performance gains.

Once a model is sufficiently optimized using the training and valida-

tion sets, its performance can be quantified using the test set, which

the model has not seen, to more accurately understand how themodel

may perform for real-world tasks.

AnaccurateMLmodelmust be able to generalizewhat it has learned

during training to novel inputs. Model overfitting occurs when the

model is specific to the training data and is unable to generalize to new

inputs. This can happen when the model learns irrelevant features—

or “noise”—within the training set. Model underfitting occurs when

the model fails to learn the defining features of the training dataset

(Figure 2C). Both overfitting and underfitting prevent the model from

appropriately generalizing to new prediction sets and result in inaccu-

rate predictions.Model averaging is commonly used to build a rigorous

model that avoids overfitting and underfitting. The dropout method46

is one such approach, which involves randomly excluding weights dur-

ing training. Another method, termed ensembling,47 compensates for

individual model inaccuracies by averaging the outputs of an array of

models that have different weights and/or architectures. Ensembling

canbeperformed in a variety ofways,with a commonmethod involving

the development of multiple copies of the same architecture, training

each on a different subset of the training dataset, and then averaging

the predictions thereafter.

Model performance is evaluated using computed metrics, such as

accuracy (the ratio of correct outputs to the total outputs), precision

(the ratio of correctly predicted positive outputs to the total predicted

positive outputs), and recall (the ratio of correctly predicted positive

outputs to the total number of real positive observations).48 These

metrics are used for classification tasks and are calculated from the

true positives (TPs), false positives, true negatives (TNs), and false neg-

atives, commonly organized using a confusionmatrix (Figure 2D). Their

use and interpretation is heavily dependent on the goals of the predic-

tion task, and the uncertainty costs must be considered accordingly.49

For example, prioritizing precision might be beneficial when screening

expensive compounds since false-positive predictions may be pro-

hibitively costly. Other standard performance measurements include

the F1-score, which aims to address tradeoff issues inherent in pre-

cision and recall by considering both together; receiver-operating

characteristic (ROC) curves (Figure 2D), which plot the true-positive

rate against the false-positive rate at different confidence cutoffs; and

precision-recall (PR) curves, which plot the precision and recall at dif-

ferent confidence cutoffs. The areas under these curves (AUC) areused

to quantify model performance. ROC curves are typically used with

balanced datasets where we observe equal numbers of positive and

negative outputs, whereas PR curves are used when there is high-class

imbalance—vastly different numbersof positive andnegative examples

from a given training dataset. Although many methods exist to train

ML models, a common sentiment is that 80% of the acquired dataset

should be centered around collecting and preprocessing data for train-

ing and the remaining 20% should be reserved for model optimization

and testing.50 Asmentioned, given the complexity of chemical and bio-

logical systems, collecting large and high-quality datasets is essential

tominimize prediction error andmaximize generalization in real-world

settings.51

REVISITING THE WAKSMAN PLATFORM WITH ML

Themajorityof our clinically usedantibiotic classes arenaturally occur-

ringmolecules discovered during the golden era of antibiotic discovery,

which lasted from the 1940s to the mid-1960s52 (Figure 1). The great

success of this period was due to the invention of one of the early sys-

tematic screeningmethods for antibiotics, theWaksmanPlatform. This

approach involved isolating secondary metabolites from soil-dwelling

microbes, the most common being the Actinomycetes, and screen-

ing these for antibacterial activity in vitro. NPs are structurally and

functionally diverse53 and their physicochemical properties have been

honed for antibacterial activity over billions of years of evolution,

making them potent and highly precise antibacterial compounds.54

Although the Waksman platform dominated for nearly two decades,

it suffered from laborious isolation and purification steps, as well as

a persistent rediscovery problem, wherein similar compounds were

repeatedly being isolated.

After somewhat of a hiatus between the 1970s and early 2000s,

the renaissance of NP discovery efforts in contemporary antibacterial

research is a result of progress in our understanding of the metabolic

pathways encoded by biosynthetic gene clusters (BGCs) that govern

NP production.55 Indeed, technological advancements, such as next-

generation sequencing, have allowed for the collection and annotation
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6 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 3 Predicting natural products usingmachine learning. (A) ClusterFinder uses an HMM to identify new BGCs frommetagenomics
datasets. HMMs are probabilistic models that can classify sequences based on their underlying hidden structure (see text). In this study, an HMM
predicts the probabilities that a Pfam domain belongs to a BGC and a non-BGC. Sequences with domains that have a high predicted probability of
belonging to a BGC are clustered and annotated. (B) DeepBGC takes as input NLP-based word embeddings of Pfam domains that can preserve
their structural and sequential relationships. RNNs are neural networks that remember their input using an internal “memory” state, making them
ideal for capturing the order of sequence data. Themodel outputs a BGC classification score for an inputted Pfam domain. (C)ML-basedmodels
have been developed for bioactivity prediction solely based on the sequence. A classifier developed byWalker and Clardy takes as input a BGC
sequence, transforms it into a vector representation based on the number of different domains occurring within the sequence, and then outputs a
bioactivity prediction.

of whole genome sequences of common NP producers, as well as

largemetagenomics databases of uncommonproducers.56,57 Together,

these advancements catalyzed the development of computational

genome exploration tools for identifying novel BGCs. Contemporary

NP discovery pipelines now consist of four general stages: (1) genome

annotation; (2) BGC identification; (3) dereplication and structure

elucidation; and (4) antibacterial activity profiling.

Genome mining tools for BGC detection, such as CLUSEAN58

and antiSMASH,59 began to emerge in the early 2000s. These were

homology-based methods that used expert-defined rules and refer-

ence alignments to identify BGCs.60,61 These approaches were impor-

tant for initiating the resurgence of NP development in antibiotic

research after the golden era, and they continue to be widely used.

However, these homology-based models are not ideal to detect the

chemical diversity inherent toNPs. For example, a challenge frequently

encountered with nonribosomal peptide discovery is the inability to

detectmodifications, such as glycosylation, which occur after assembly

by the nonribosomal peptide synthetase.62 Homology-based models

are also limited in their ability to discover structurally novel sec-

ondary metabolites.63 Fortunately, ML models are well-positioned for

generalizing across large BGC sequence spaces.64 As a concrete exam-

ple, ClusterFinder65 is a hidden Markov model (HMM) developed for

novel BGC identification from metagenomics datasets (Figure 3A).

HMMs are probabilistic models that can implicitly analyze under-

lying hidden patterns in datasets based on some given observable

condition. For example, HMMs can be used to predict the location

of substructures and motifs within a sequence by using probabilistic

models of substructures or features, whose parameters are learned

from the composition of the sequence (e.g., frequencies of various

DNA sequence patterns in the case of DNA sequences as input). Clus-

terFinder uses an HMM to predict the probabilities that a protein

family (Pfam) domain belongs to a BGC and a non-BGC. These prob-

abilities are based on the domain’s frequency in a BGC, a non-BGC,

as well as the frequency of its neighboring domains. Sequences with

domains that have a high predicted probability of belonging to a BGC

are then clustered and class annotated. For this purpose, ClusterFinder

was trained on 677 experimentally characterized BGCs and 100 non-

BGCs to learn the probability that a Pfam domain belongs to a BGC

or a non-BGC. These probabilities were calculated using the frequency

of occurrence of the domains within the training set sequences. Clus-

terFinderwas thenused topredictwithhigh confidence∼11,000BGCs

in ∼1000 different genomes, of which 69% were not identified by
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 7

rule-based methods, such as antiSMASH.65 More recently, Clus-

terFinder was used to discover the thiopeptide antibiotic lactocillin

from the humanmicrobiome.66

Genome mining was further improved through the adoption of nat-

ural language processing (NLP)-based DL models that equate genetic

sequences to language—both genetic sequences and language are

based on strings of characters that follow their own syntax in order

to be functional.67 Therefore, NLP models can preserve the under-

lying relationships of a sequence (e.g., gene sequence structure) in

a vector representation, a challenge that limited BGC identification

with other models, particularly in the context of generalization to

new sequence space. For instance, Hannigan et al.68 adopted an NLP-

based approach to transform Pfam domains into word embeddings

to develop DeepBGC, a recurrent neural network (RNN) designed to

identify novel BGCs (Figure 3B). RNNs are neural networks that can

remember their input using an internal “memory” state, making them

ideal for capturing the order of sequence data. DeepBGC was trained

on a diverse dataset of ∼600 known BGCs and ∼10,000 non-BGC

sequences. Themodel predicted aBGCclassification score for inputted

Pfam domains encoded using word embeddings. DeepBGC was eval-

uated against, and outperformed, ClusterFinder across three tasks:

(1) locating BGCs within whole genomes (DeepBGC: AUC= 0.923 and

ClusterFinder: AUC = 0.847); (2) differentiating BGCs and generated

non-BGCs (DeepBGC: AUC= 0.984 and ClusterFinder: AUC= 0.936);

and (3) locating novel BGC classes from a test set (DeepBGC: AUC =

0.946 and ClusterFinder: AUC= 0.865).

Integration of nongenomics experimental data with ML has been

successful in the later stages of NP discovery, including dereplication,

an essential and laborious procedure used to filter known secondary

metabolites. Dias et al.69 developed an NP discovery approach to

predict compounds with antibacterial activity, with the objective of

reducing time and biological activity screening costs associated with

conventional NP discovery pipelines. Here, the authors trained a

variety of ML and DL models (e.g., RFs, SVMs, and CNNs) to learn

NP structure–activity relationships from a collection of 116 crude

extracts, fractionated extracts, and purified compounds. Themolecules

were encoded using descriptors derived from źH and 13C NMR spec-

tra. The authors validated their model using an external test set of four

new compounds and empirically tested their results in vitro. This led

to the discovery of a novel NP that was able to inhibit the growth of

methicillin-resistant Staphylococcus aureus.

Additionally, ML approaches have been used for bioactivity predic-

tion.Walker and Clardy70 developed anML-based approach to predict

NP antifungal and antibacterial activity from BGC sequence alone

(Figure 3C). They trained three ML classifiers (SVM, RF, and logistic

regression) with a curated set of known BGC sequences, coupled with

the binarized bioactivities (antibacterial, antifungal, anticancer, and

cytotoxic) of their encoded NP. The objective of their approach was to

predict whether an inputted BGC sequence encoded a bioactive NP. To

evaluate theirmodel’s performance, they computed balanced accuracy

(the average of the TP and TN rates), ROC curves, and PR curves for

each ML classifier. The authors assessed their models’ performances

using a test set of 258 BGC sequences that varied in their similar-

ity to the training set. The best classifier had an accuracy of ∼80%

and the worst was ∼60%. Of note, BGCs that were similar to those in

the training set were classified with greater accuracy, emphasizing the

need for larger and more diverse datasets during training to improve

generalization across wider regions of sequence space.

Many BGCs encode for secondary metabolites that are not synthe-

sized in standard laboratory conditions, but may be induced through

culturing in unconventional growth media, as well as through het-

erologous expression using synthetic biology approaches.71 To this

end, modern NP discovery makes use of biological engineering princi-

ples to regulate and optimize NP biosynthetic pathways. Indeed, ML

and DL approaches have shown promise in assisting with promotor

prediction,72 promotor design,73,74 codon optimization,75 and protein

engineering.76 For example, Kotopka and Smolke73 exemplified how

DL can be used to predict promoter activity and generate novel ones.

The authors trained a CNN on promoter sequence–activity relation-

ships collected from the gene expression activity of 675,000 sequences

in the yeast Saccharomyces cerevisiae. Though they are commonly used

with image datasets, CNNs are ideal for use with sequences since they

can preserve their spatial structure. The model took as input matrix

representations of gene sequences (transformed using one-hot encod-

ing) and predicted their promoter activity. Using this large training set,

they created new promoter sequences using three generative models,

with the objective of maximizing promoter activity, and synthesized

them for empirical validation. First, in a screening design strategy, ran-

domly generated promoter sequences were taken as input for their

CNN. If the predicted activity surpassed a specified threshold, the

promoter was shortlisted for synthesis. Second, using an evolution

strategy, the authors generated promoter sequences that were iter-

atively mutated and evaluated for desired activity in silico until the

activity surpassed the threshold value. Lastly, using a gradient ascent

design strategy, randomly generatedpromoter sequenceswere altered

until their predicted activity score was optimized. The authors suc-

cessfully designed and experimentally validated over 100 promoters

and, using this multipronged approach, found that promoters designed

using the evolution or gradient ascent strategies generally exhibited a

greater or similar level of activity to their benchmark dataset. Overall,

NP discovery will greatly benefit from the curation of large, standard-

ized datasets. This will accelerate the development of newMLmodels,

improve their ability to generalize to new sequences, and broaden the

utility of synthetic biologymethods toward NP production.

EXPANDING THE CHEMICAL SEARCH SPACE FOR
NEW ANTIBIOTICS

As the golden era waned toward the mid-1960s, medicinal chemistry

efforts grew in response (Figure 1). In an effort to bypass resistance

determinants, improve absorption, distribution,metabolism, excretion,

and toxicity (ADMET) properties, and increase antibacterial potency,

existing NPs were used as scaffolds toward the development of

semisynthetic derivatives thereof.77 This era was highly successful

in these efforts. For example, medicinal chemistry approaches were
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8 ANNALSOF THENEWYORKACADEMYOF SCIENCES

responsible for the optimization of nalidixic acid into fluoroquinolones.

However, it was also marked by a general lack of innovation, owing to

the challenge of developing truly novel classes of antibiotics.4

Occurring somewhat in parallel with the medicinal chemistry era of

antibiotic discovery was the emergence of high-throughput screening

of synthetic chemical libraries. Here, the development of combinato-

rial chemistry methods and improved laboratory automation enabled

the assembly and manipulation of large chemical collections that

frequently exceeded hundreds of thousands of compounds. These

technological advancements were complemented by the development

of genomics technologies, such as recombinant DNAmethods, to iden-

tify and purify biologically “essential” protein targets for chemical

screening.17 The convergence of innovation in chemistry, laboratory

automation, and genomics enabled the growth of target-based screen-

ing as a dominant antibiotic discovery model. Though this approach

resulted in many hit molecules, the lack of diversity of chemical

libraries used, as well as the reductionist nature inherent to in vitro

assays, limited the discovery of viable whole-cell–active antibiotics.4

We note that synthetic compound libraries are typically composed

of chemicals with drug-like properties.78 However, antibiotics have

unique physicochemical properties relative to conventional human

drugs (greater molecular weight, chemical complexity, polarity, and

charge) and, therefore, exist in a different chemical space.79 As such,

typical synthetic compounds are generally less suited to evade efflux

or bypass permeability barriers, such as the Gram-negative outer

membrane.80

More contemporary high-throughput screening programs for

antibacterial molecules are conducted using live cells,81 which

partially addresses the aforementioned issues encountered in target-

based in vitro screens. Unfortunately, attrition rates in the antibiotic

development pipeline have not sufficiently waned,7 and developing

an antibiotic remains expensive and challenging.82 Indeed, in addi-

tion to antibacterial efficacy,79,83 an antibiotic must have additional

pharmacological properties that permit clinical efficacy.78 As a result,

a promising antibacterial compound may spend years in early devel-

opment stages, before ultimately being deemed unsuitable due to

concerns of toxicity, PK/PD, and/or other ADMET properties.

At a high level, antibiotic drug discovery is amultiproperty optimiza-

tion problem. A primary goal of preclinical antibiotic discovery should

be in predicting the success of a compound as early in the develop-

ment process as possible. Unsurprisingly, this is no trivial feat; it has

been estimated that 1060 drug-like chemicals can theoretically exist.84

Fortunately, such multiproperty optimization tasks are ideally suited

for ML and DL methods since they can rapidly explore broad chem-

ical search spaces and enrich for the most promising compounds for

downstream validation and optimization.85

Quantitative structure–activity relationships (QSARs) are fre-

quently used in drug design and for assembling chemical libraries.86,87

Contemporary QSAR modeling is largely derived from the work of

Hansch et al.,88 and, in the early 1980s, QSAR models began to

focus on bioactivity prediction in drug discovery.89 ML algorithms

have since become a staple in QSAR modeling, where representa-

tions of chemical structures are built from manually curated param-

eters of a molecule’s structure or physicochemical properties, such

as hydrophobicity, molecular weight, and the number of rotatable

bonds (Figure 4A). For example, Ivanenkov et al.90 trained an array

of ML models, including kNN, RF, SVM, and FFNN (Figure 2B), on a

standardized dataset of 73,000 molecules to predict compounds with

activity against E. coli. For reference, this highly imbalanced train-

ing dataset contained 8724 active compounds and 65,843 inactive

compounds. The authors used 40 molecular descriptors for their com-

pounds, including hydrophobicity, number of hydrogen bond donors

and acceptors, number of rotatable bonds, and others. They assessed

their model using an external test set of 5000 compounds that were

randomly selected for low similarity to the training set. This model

predicted 371 active compounds, of which 13 exhibited considerable

activity when validated in vitro against E. coli.

Although classic molecular fingerprint–based ML models can per-

form adequately when performing predictions in well-characterized

chemical spaces, they are unable to generalize well to novel chemical

spaces due to the inherent limitation of using human-defined features.

QSAR models greatly benefited from computational advancements

that enabled the development and widespread use of graph neural

networks (GNNs)91,92 (Figure 4A). Chemprop93 is considered a world-

leading GNN-based molecular property predictor. Chemprop applies

an MPNN architecture to aggregate information about local molecu-

lar structure into a single vector representation, which is then taken

as input into an FFNN for molecular property prediction. For instance,

Stokes et al.18 trained Chemprop on a collection of ∼2500 small

molecules for those that were growth inhibitory against E. coli. Growth

inhibitory activity was binarized as 1 (inhibitory) or 0 (not inhibitory).

Following training, theirmodel was used to virtually screen a collection

of over 100 million structurally diverse compounds94 for antibacterial

activity against E. coli. From this screen, the authors discovered halicin,

a novel antibacterial molecule with activity against an array of diverse

pathogens, including Acinetobacter baumannii, Clostridium difficile, and

M. tuberculosis.

DL approaches can also be used to traverse uncharted chemi-

cal space through de novo antibiotic design with directed molecular

generation using so-called generative ML models. For example, vari-

ational autoencoders (VAEs)95,96 use two neural networks (together

called an autoencoder): one to encodemolecular structures into dense

vectors and one to decode the vectors back to a molecular struc-

ture (Figure 4B). This compression and decompression of information

allows the model to learn molecular features. New molecules can be

generated by VAEs through the addition of noise to their latent vec-

tor representation. Gómez-Bombarelli et al.97 developed a VAE for

the molecular generation to design molecules optimized for their syn-

thetic accessibility score (SAS) and their drug-likeness, as defined by

their qualitative estimate of drug-likeness (QED)98 score. They trained

their model on SMILES strings of 250,000 drug-like molecules from

the ZINC database.94 The VAE was then combined with a molecular

property predictor to evaluate VAE output molecules in silico. Their

model was able to take as input SMILES strings, encode them into a

latent representation, and iteratively optimize the compounds for the

desired properties. Though their model was consistent in its ability to
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 9

(A)

(B)

F IGURE 4 Machine learning for small molecule antibiotic discovery. (A)ML algorithms are useful for exploring antibacterial chemical spaces.
ML algorithms can be trained using classical molecular fingerprints, which are expert-defined parameters of a molecule’s structure and
physicochemical properties, such as hydrophobicity, molecular weight, number of rotatable bonds, among others. GNNs automatically generate
vector representations of molecular graphs and canmore accurately generalize to novel chemical spaces. (B) DL algorithms can also explore vast
regions of chemical space through de novomolecular generation. VAEs and GANs are two popular architectures that have enabled progress in
de novomolecular generation for various molecular design tasks.

generate realistic molecules with improved SAS and QED scores from

the lowest-scoring molecules from the ZINC database (molecules in

the 10th percentile), the authors found that many of their generated

molecules violated stability and synthetic constraints, rendering them

unviable.

Jin et al.99 expanded on the conventional VAEwith the development

of the junction tree variational autoencoder (JT-VAE) which creates

a vocabulary of extracted molecular substructures that can be used

to generate chemically valid novel compounds, thus overcoming the

problems encountered by Gómez-Bombarelli et al. With a JT-VAE,

a molecule is generated through the iterative addition and scoring

of individual nodes that correspond to molecular substructures. The

authors trained their model on a set of ∼250,000 molecules from the

ZINC database,94 then evaluated the ability of their model to gener-

ate molecules with a desired octanol-water partition coefficient (logP)

value and optimize a given molecule to improve its logP value. The

JT-VAE outperformed other variations of the VAE in its ability to gen-

erate and optimize molecules for a desired logP; each of its top three

generatedmolecules obtained higher property scores, and their model

was able to improve a given molecule’s logP while still maintaining

the new molecule’s similarity to the original compound, with a suc-

cess rate of 83.6%. Importantly, all JT-VAE-generated molecules were

chemically valid, thus outperforming prior generativemodels.

Another approach to de novo molecular generation applies gener-

ative adversarial networks (GANs)100–103 (Figure 4B). At a high level,

these models place two neural networks in competition with one
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10 ANNALSOF THENEWYORKACADEMYOF SCIENCES

another: a generative network creates molecules, while an adversar-

ial network evaluates if those molecules are real (from the training

set) or generated. The two networks learn from each another until

the generative network can create novel compounds that are indis-

tinguishable from the training set. Méndez-Lucio et al.103 were able

to generate molecules by training two conditional GANs on a publicly

available dataset of over ∼20,000 compounds and their correspond-

ing gene expression profiles (978 genes) from chemically perturbed

cancer cells.104 Their objective was to design a molecule that could

produce a desired gene expression profile. Here, a generative net-

work takes in as input a desired gene expression profile and a random

noise vector to create a novel molecule. Next, an adversarial net-

work evaluates if the generated molecule is “real” (from the training

dataset) or generated. A conditional neural network then determines

the probability of the generated molecule eliciting the required tran-

scriptional response. This conditional network takes as input both the

gene expression fingerprint and the vector representation of the gen-

erated molecule and assigns a classification score to the molecule (the

higher the score, the more favorable the molecule). This process is

repeated with a second conditional GAN to refine the properties of

the novel molecule. Although their model was successful in its objec-

tive, it was not highly generalizable and failed to generate structurally

novel compounds relative to what was observed during training. Nev-

ertheless, their study begins to highlight the utility of ML approaches

in designing compounds with specific targets17,103,105,106 or with mul-

tiple targets107–110 in a specific biological system. Approaches such as

this may be adopted in antibiotic discovery for similar purposes as in

cancer research.

Antibiotic discovery is a multiproperty optimization problem, so it

is ideally suited for ML techniques. Multitask prediction models111,112

identify features associated with multiple properties to enable the

prediction of molecules with the pharmacological features necessary

for human use, while maintaining antibacterial efficacy. Though mul-

titask prediction models remain an emerging trend in drug discovery,

some studies have shown their early potential.113–115 For example,

Khemchandani et al.114 developed DeepGraphMolGen, a multitask

model to generate molecules that are able to bind to dopamine trans-

porters, but not norepinephrine transporters. Their approach consists

of two phases: property prediction and molecular generation. In the

first phase, a GNN and an FFNN are used to learn the features inher-

ent to molecules with a high binding affinity to dopamine transporters

and a low affinity for norepinephrine transporters. To this end, they

trained their model on publicly available datasets of molecular bind-

ing affinities for each transporter (4506 values for dopamine and 2780

values for norepinephrine).116 After training their model, a reinforce-

ment deep learning model (RL) was used to generate molecules in

the second phase. An RL model generates a molecular graph by itera-

tively adding a bond or substructure, beginning with a single atom or

molecule. We note that an RL model learns using rewards to guide the

design process: it is rewarded for generating a SMILES string that is

valid, drug-like, can be synthesized, and which optimizes the desired

computed binding constants. The generated molecule is then inputted

to the GNN to predict the generated molecule’s binding constant to

both dopamine and norepinephrine transporters. The cycle contin-

ues until the molecule is optimized. Although their findings were not

experimentally validated, the authors present a promising approach to

the multitask molecular generation that may be used toward in silico

antibiotic drug development.

EMERGING APPLICATIONS OF ML IN ANTIBIOTIC
DISCOVERY

Systems biology

Modern antibiotic drug discovery consists of a diverse suite

of approaches, including unconventional methods, such as

target-enriched whole-cell screening, testing naïve molecules in physi-

ologically relevant conditions, and antibiotic adjuvant development.117

This methodological diversity reflects the newfound appreciation for

the intrinsic complexity of antibiotic function in the context of the

whole cell, which has resulted in the adoption of systems-level

approaches that integrate chemical biology with genome-wide

investigations.15,16,118,119 However, these methods also tend to

generate dense, multidimensional datasets that are challenging to

comprehensively interpret due to the complexity inherent to biological

systems.

Fortunately, ML approaches may be used to deconvolute causal

relationships between chemical or genetic perturbations and phe-

notypic outcomes, as well as help us elucidate cryptic aspects

of bacterial physiology that can be leveraged toward new antibi-

otic development.120–122 For example, Kavvas et al.120 developed

Metabolic Allele Classifier (MAC), a flux balance analysis–based ML

classifier, to predict resistance mechanisms arising in M. tuberculosis

against seven diverse antibiotics—isoniazid, rifampicin, d-cycloserine,

ofloxacin, ethambutol, pyrazinamide, and para-aminosalicylic acid.

The model is trained on: (1) genome sequences of M. tuberculosis;

(2) their corresponding resistance phenotypes; and (3) a genome-scale

metabolic model of M. tuberculosis. The authors used a training set

consisting of 375 susceptible and resistant isolates of M. tuberculo-

sis. The model takes as input the gene sequence of an M. tuberculosis

strain and provides an interpretable prediction of its resistance pheno-

type in the form of the associated genetic and metabolic determinants

(given as steady-state fluxes). The authors showed that, in addition to

a high classification accuracy (AUC= 93% for isoniazid), MACwas able

to identify both known and novel genetic resistance determinants. It

could also identifymetabolic pathways that differed between resistant

and susceptible strains for para-aminosalicylic acid, pyrazinamide, and

isoniazid.

Additionally, Woo et al.123 developed Deep gene COmpound Pro-

filer (DeepCOP), an FFNN to predict the up- and downregulation of

genes of cancer cells following a chemical perturbation (Figure 5). The

authors trained DeepCOP on chemical–genetic fingerprints derived

from a collection of 1.3 million gene expression profiles of 77 different

cancer cell lines chemically perturbed with ∼20,000 compounds.104

Gene expression was represented as standardized Z-scores and
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 11

F IGURE 5 Emerging challenges for machine learning in antibiotic discovery. Themajor stages in preclinical antibiotic discovery, highlighting
how emergingML andDL approaches can be integrated end-to-end to streamline new antibiotic discovery and development. ML-based
approaches allow the exploration of vast chemical and sequence space, and, in combination withmultiproperty optimizationmethods, can reduce
attrition rates in the later stages of antibiotic development by increasing the probability of identifying promising candidates.

binarized using upper and lower threshold values; upregulated genes

were above the upper threshold and downregulated geneswere below

the lower threshold. Chemical structures were represented using rule-

based molecular fingerprints, and each gene’s corresponding gene

ontology (GO) terms were vectorized using one-hot encoding. The

authors concatenated the molecular fingerprints with the GO term

vector representation and used these combined vectors to train their

FFNN. Since genes within the same pathway or with the same func-

tional class share GO terms, this allowed the model to learn chemical–

gene interactions which it could use to make predictions on the

regulation of genes in response to an unknown compound. They vali-

dated their model (AUC∼0.8) by comparing its predictions of endpoint

gene expression for three compounds outside of the training dataset

(enzalutamide, VPC-17005, and VPC-14449) to the experimentally

derived RNA-Seq profiles. While the focus of this early proof-of-

concept study was cancer biology, similar approaches can be adopted

for developing antibacterial compounds that induce a desired gene

expression profile, aswell as in our efforts to develop narrow-spectrum

antibiotics by exploiting genetic or metabolic pathway differences at

the species124–126 or genus level.127,128

Combinatorial therapies

Chemical–genetic interactions form the biological basis of combinato-

rial therapies, wherein multiple compounds are administered together

with the goal of observing synergy—the instance where a combination

of molecules shows greater bioactivity than the expected sum of their
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12 ANNALSOF THENEWYORKACADEMYOF SCIENCES

individual activities.129 As highlighted above, ML may be integrated

with systems-level approaches to elucidate dense chemical–genetic

networks underlying drug synergy phenotypes. ML may also aid in the

discovery of novel antibiotic combinations since systematically explor-

ing antibiotic combinations at a large scale is not feasible, owing to the

combinatorial explosion that arises when empirically testing pairwise

chemical combinations. For example, with 10 compounds, the number

of possible pairwise combinations equals 45. With 1000 compounds,

a relatively small chemical collection, the number of possible pairwise

combinations equals 499,500. Therefore, ML approaches are ideally

suited for predicting synergistic antibiotic combinations, given their

ability to rapidly traverse through large chemical and biological spaces

when appropriately trained.

ML methods for predicting synergistic chemical combinations typ-

ically combine experimentally determined drug–drug interactions

(fractional inhibitory concentration,130 Bliss scores,131 and Loewe

additivity131) with the molecules’ underlying biochemical target or

pathway interactions.132 Chandrasekaran et al.133 developed INDIGO,

an RF model trained on binarized chemical–chemical interaction

data—labeled as either synergy or antagonism—as well as previously

published chemical–genetic interaction data for E. coli gene deletion

mutants in response to 15 drugs134 (Figure 5). INDIGO was trained

on chemical–chemical interactions and chemical–genetic interactions,

so it could learn the genes that are predictive of synergy or antag-

onism. Chemical–chemical interactions were represented with their

Loewe additivity score and the chemogenomic profiles were binarized

based on each strain’s sensitivity to a certain compound. INDIGO can

then predict synergistic or antagonistic interactions between two com-

pounds using their individual known chemical–genetic profiles. The

authors experimentally validated two predicted combinations (fusidic

acid with rifampicin and fusidic acid with vancomycin). Mason et al.135

took an alternate approach to chemical genomics–basedmodeling and

developed CoSynE, an RF model trained on a total of 153 chemical–

chemical Loewe additivity interaction scores and rule-based structural

fingerprints generated for each compound. Unlike INDIGO, CoSynE

does not use any fitness data—only the interaction scores and the

corresponding chemical structures. The authors assessed their model

using a validation set of six compounds (kanamycin, penicillin, rox-

ithromycin, 5-fluorouracil, mupirocin, and pentamidine). CoSynE pre-

dicted 12 synergistic combinations and 10 of these were successfully

validated in vitro. Other papers that applied similar model architec-

tures for chemical–chemical interaction prediction are referenced

here.136–138

Unfortunately, the use of DL models in antibiotic combination

discovery is not yet common, largely due to a lack of available

chemical–chemical interaction data in bacteria at a sufficient scale.

Other fields, particularly anticancer drug discovery, have publicly avail-

able datasets139 that have resulted in a comparatively large effort to

develop DL models for predicting synergistic drug combinations.140

For example, Preuer et al.141 developedDeepSynergy, anFFNNused to

predict anticancer drug synergy. Here, the authors trained their model

on over 20,000 chemical–chemical interactions (583 pairwise com-

binations at four different concentrations) in 39 cancer cell lines.142

Compounds were encoded using rule-based fingerprints of over 4000

descriptors (molecular weight, number of rotatable bonds, electro-

topological states, and topological descriptors). Unlike many other

synergy prediction models, DeepSynergy does not use chemical–

genetic interaction data, instead relying on a published transcriptomic

dataset of gene expression profiles for untreated cells from each cell

line,143 thereby allowing their model to differentiate between cell

lines. As input, the model receives the gene expression profiles of an

untreated cell line and the chemical structures of each drug in the com-

bination. It outputs the predicted synergy score for the two molecules

based on the Loewe additivity model. DeepSynergy outperformedML-

based approaches that usedRFs and SVMs, achieving anAUCof∼0.90.

Of note, similar DL models have been developed that also use large

chemogenomic datasets.141,144,145

Jin et al.146 developedComboNet, aGNNtopredict synergistic drug

combinations against SARS-CoV-2. ComboNet is trained using pub-

licly available datasetsmeasuring the reversal of SARS-CoV-2–induced

cytopathic effect in Vero E6 host cells. Their training set included:

(1) 88 drug–drug interactions; (2) the antiviral activities of over 8000

compounds; and (3) the molecular structures of each compound in

the training set. Due to an insufficient amount of drug–drug combina-

tion data for SARS-CoV-2, the authors also trained their model on the

drug–target interactions of over 10,000 compounds against the SARS-

CoV-2 protein targets ACE2, 3CLpro, and Spike-ACE2. To further

expand their training set, the authors included data on HIV since the

host–viral interactions between HIV and SARS-CoV-2 are sufficiently

similar. This included: (1) 114 drug–drug interactions; (2) the antiviral

activities of 30,000 compounds; and (3) drug–target interaction data

for six HIV targets (HIV-1 protease, integrase, reverse transcriptase,

CCR5, CXCR4, and CD4). ComboNet was validated using a predic-

tion set of 153 diverse compounds, which resulted in 11,600 predicted

combinations. The 30 highest-scoring combinations were then tested

in vitrousing a SARS-CoV-2 infection assay inVeroE6 cells, and the syn-

ergistic interactions of two combinations (remdesivir-reserpine and

remdesivir-IQ1S) were observed. Further analysis on the benefit of

multidisease training with ComboNet showed that removing the addi-

tional HIV data from the training set decreased the ROC-AUC from

0.820 to 0.658. With this study, Jin et al. exemplify a unique method

of how a lack of drug–drug interaction data for model training may be

overcome in some instances—particularlywhen trainingdata exist for a

sufficiently similar biological system. Overall, the further development

of sufficiently large chemical–chemical datasets for an antibiotic activ-

ity will help accelerate the development and real-world use of synergy

predictionmodels.

Antimicrobial peptides as emerging antibiotics

Non–small-molecule antibiotics—antimicrobial peptides (AMPs) for

example—are becoming recognized as alternatives to conventional

antibiotics. Similar to combination therapy development, AMP discov-

ery is an ideal challenge for ML approaches since the identification

and classification of AMPs from large sequence spaces is one of the
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major bottlenecks in their development.147 A variety of ML model

architectures have been used to predict and design AMPs, typically

training models on both sequence information and antimicrobial activ-

ity data. For instance, Yoshida et al.148 trained an ML classifier with

an evolutionary algorithm on empirically collected AMP IC50 values

against E. coli to optimize their antibacterial activity. Evolutionary algo-

rithms optimize peptide sequences through iterative mutation and

in silico evaluation steps (Figure 5); peptide sequences are mutated

and then evaluated for predicted antimicrobial activity. The sequences

with the greatest predicted activity are ranked highly and subjected

to additional rounds of mutation and evaluation, until the predicted

activity is maximized. Here, the authors used a linear regressionmodel

to predict which amino acid mutations would optimize the AMP’s

antimicrobial activity. Specifically, the regressor was trained on exper-

imentally determined IC50 values for ∼180 peptides derived from a

control peptide, temporin, against E. coli. With their model, the authors

successfully optimized 44 peptides, which showed up to 160-fold

improvement in their growth inhibitory activity against E. coli in vitro,

relative to temporin.

Porto et al.149 used an evolutionary algorithm to design AMPs by

applying a fitness function that introduces new amino acids into a

sequence by optimizing the ratio between hydrophobic moment and

helix propensity. The authors generated 100 peptides from their cho-

sen parentAMP, Pg-AMP1. For validation, they tested the antibacterial

activity of 15 generated peptides against Pseudomonas aeruginosa, as

well as the toxicity of the peptides against human blood cells. Inter-

estingly, none of the 15 peptides were hemolytic, but eight of the 15

displayed antibacterial activity with an MIC less than or equal to their

control peptide, magainin 2.

Torres et al.150 developed a scoring function to mine the human

proteome for AMPs. Their function assigned a score to each

human proteome-encoded peptide based on their physicochemi-

cal properties—namely, sequence length, charge, and hydrophobicity.

This led to the selection of desirable peptides with potential antimi-

crobial activity. The authors identified ∼2600 potential AMPs among

43,000 candidate peptides across a variety of organ systems (cardio-

vascular, nervous, renal, hematopoietic, and digestive). For validation,

they synthesized 55 peptides and tested them against an array of five

pathogenic bacterial species (E. coli, P. aeruginosa, S. aureus, Klebsiella

pneumoniae, and A. baumannii)—35 peptides were active. Remarkably,

further studies of their two most potent AMPs showed continued

activity against drug-resistant A. baumannii, whereas polymyxin B,

their control peptide antibiotic, did not.

Early QSAR approaches demonstrated the value of DL in AMP dis-

covery. Cherkasov et al.151,152 developed a simple three-layer FFNN to

design novel AMPs. Here, the authors computer-generated two train-

ing sets: set A (∼900 peptides) and set B (500 peptides). Set A was

designed such that the peptides were similar in composition to known

AMPs. Set B was developed using the amino acid compositions of the

most active peptides from set A. Then, they collected (1) 44 physico-

chemical descriptors (e.g., charge and hydrophobic moment) for each

peptide; and (2) antimicrobial activity against P. aeruginosa in the form

of IC50 values. Their neural network jointly learned the structure and

activity of each peptide in the training set and was then applied to

identify AMPs from a test set of ∼99,000 peptides generated using

the amino acid composition of peptides from training set B. To vali-

date their findings, the authors synthesized 200 peptides of varying

predicted activity levels and tested them against P. aeruginosa. Of the

50 peptides highly predicted to be active, 47 were confirmed and

were also more active than their control peptide, Bac2A. All 50 tested

peptides that were predicted to be inactive were, indeed, inactive.

Das et al.153 used a VAE to generate broad-spectrum AMPs with

low toxicity. The authors trained their model on a subset of the

UniProt sequence database154 consisting of peptides 25 amino acids

or less in length (93,000 unlabeled sequences and 5000 known AMP

sequences). With their trained VAE, the authors generated ∼90,000

peptide sequences, which they screened in silico using an RNN to

predict antimicrobial activity, broad-spectrum potency, toxicity, and

secondary structure. Their RNN was trained on annotations extracted

from several databases, including satPDB, DBAASP, ToxinPred, and

AMPEP. Twenty of their most promising predicted peptides were

selected for synthesis and wet lab validation of antimicrobial activity

against S. aureus and E. coli. Among these 20, five peptides exhibited

an MIC against both pathogens. The authors further highlighted two

peptides, YI12 and FK13, for their in vivo potency against multidrug-

resistant K. pneumoniae, reduced propensity for resistance in E. coli

(relative to the carbapenem antibiotic imipenem), and their efficacy in

amousemodel of infection.

Integration of ML for MOA prediction

Though their use in antibiotic discovery may be somewhat more

focused on chemical and sequence space exploration during early

discovery—largely due to the existence of empirical data with which to

train—ML approaches can be integrated into every step of the antibi-

otic development pipeline. Precisely determining a novel compound’s

MOA is a challenging process requiring a large suite of untargeted

techniques and, often, nonobvious interpretations of the resulting

systems-scale datasets. Indeed, contemporary methods to acceler-

ate MOA elucidation, such as high-content image analysis155–157 and

omics-based approaches,158–160 produce large, multidimensional data

outputs that are challenging to fully leverage.Appropriately trainedML

algorithms have powerful discriminative ability and are beginning to

prove their potential in MOA elucidation.28,161 For example, Godinez

et al.29 implemented DL-based approaches with high-content image

analysis for MOA prediction. Here, the authors trained a CNN on a

collection of ∼1700 images of MCF-7 cancer cells that were chemi-

cally perturbed with 37 compounds across 12 unique mechanisms of

action.162 Their trainedmodelwas able to accurately predict theMOAs

of each compound at eight different concentrations, providing a sim-

ple proof-of-concept for the potential of DL algorithms in high-content

image analysis for drug classification.

A similar approach can be applied to antibiotic discovery using bac-

terial cell micrographs for MOA prediction (Figure 5).156,163 Indeed,

Zoffmann et al.164 used an RF model to develop an automated
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bacterial cytological profile image analysis pipeline for the purposes

of antibiotic discovery and MOA elucidation. Here, alterations in bac-

terial cell envelope morphology, nucleoid morphology, and membrane

integrity were visualized using fluorescence microscopy. The model

takes as input a compound label and the corresponding phenotypic fin-

gerprint that is generated from over 100 features extracted from the

images (cell morphology, DNA morphology, membrane fluorescence

intensity, DNA fluorescence intensity, and membrane integrity). The

authors created an E. coli reference image training set of six chemically

perturbed conditions (sub-MIC concentrations of colistin, doxycycline,

ceftriaxone, globomycin, levofloxacin, and mecillinam) and a DMSO

control condition. Their model outputs a similarity score relative to

the reference image dataset, effectively comparing theMOAof a naïve

inputmolecule to each compound in the reference set. Following train-

ing, the authors validated their model’s ability to identify compounds

with a high similarity to the reference compounds using a test set

of seven antibiotics with MOAs similar to those in the reference set.

Additionally, they showed the model’s ability to predict the MOA of

novel compounds using a test set of eight compoundswith an unknown

or dissimilar MOA to an expanded training set (which included tri-

closan, trimethoprim, MD3, and nitrofuran). Here, they synthesized

five analogs of boronate—suggested to be an inhibitor of the fatty acid

biosynthesis enzyme FabI—and their model predicted three of these

compounds tobehighly similar to triclosan, a knownFabI inhibitor. Fur-

thermore, the authors showed that their ML image analysis approach

was sufficiently robust to be used against A. baumannii to characterize

antibiotic-specific phenotypes, highlighting this approach’s potential to

be used across bacterial species.

Beyond image classification, investigators have also successfully

integrated ML with experimental multi-omics data to develop models

forMOAprediction.165–167 As a concrete example, Yang et al.165 lever-

aged a multitask elastic net, which solves multiple linear regression

problems simultaneously, to understand the mechanisms underlying

antibiotic lethality. The authors performed an antibiotic–metabolite

chemical screen in E. coli with a set of 206 diverse carbon, nitro-

gen, phosphorus, and sulfur metabolites. For each condition, IC50

values were collected for three antibiotics (ampicillin, ciprofloxacin,

and gentamicin) at 13 concentrations, yielding a dataset of over 20,000

values. These data were used to create network metabolic models of

E. coli for each metabolite condition, to be used as input in the multi-

task elastic net. This ensured that the model learned the relationships

between each antibiotic and the metabolic pathways involved in their

activity. They validated their model by identifying 13 pathways associ-

ated with central carbon metabolism and nucleotide biosynthesis that

were involved in the lethality mechanisms of ampicillin, ciprofloxacin,

and gentamicin—a relationship which has previously been described.

Interestingly, the authors also showed that conventional methods of

pathway analysis that use hit cutoff values did not identify some novel

pathways that were identified using their ML approach. Specifically,

their model implicated purine biosynthesis in antibiotic lethality. Fur-

therwet lab investigation found adenine limitation causedby antibiotic

exposure induces purine biosynthesis, which drives central carbon

metabolism and respiration, damaging DNA through the production of

toxic metabolic byproducts.

OUTLOOK

The rapid development of diverse ML methods has positioned us to

change the paradigm of preclinical antibiotic discovery and develop-

ment (Figure 5). In its current state, the antibiotic discovery pipeline is

insufficient. However, ML approaches show great promise in increas-

ing efficiency and decreasing the cost of new antibiotic discovery.

Perhaps the most exciting prospect of contemporary ML and DL

approaches—when appropriately trained—is their ability to efficiently

identify antibacterial molecules across numerous desirable properties.

Indeed, it is relatively easy to find molecules that are antibacterial,

but it is challenging to find molecules that are suitable for use as

clinical antibiotics. Rapidly identifying the most viable molecules for

downstream optimization will accelerate antibiotic development by

minimizing attrition rates throughout the development pipeline. Addi-

tionally, there is a growing interest in personalized medicine where

patient care and treatment, as well as disease prediction and diagnosis,

are tailored to the individual.168 In the context of antibiotic discovery,

this means the development of patient-specific and pathogen-specific

antibiotics, as well as next-generation rapid diagnostics, to avoid dis-

rupting the native microbiota and decreasing the rate of dissemination

of resistance. Importantly, other areas of drug discovery have shown

promising advancement toward these goals in personalized medicine.

In anticancer development, for example, immunotherapies and target-

specific compounds have already been approved for clinical use.169

Moreover, we have recently seen the development of a variety of

point-of-care diagnostics for COVID-19.170 The time is ripe for the

widespread adoption of ML and DL approaches for new antibiotic

discovery to increase the rate of new drug discovery and decrease

the burden of the inevitable evolution of resistance. We posit that

outpacing resistance is possible.

We emphasize that interdisciplinary collaboration is essential since

both experimental data and ML model development must be robust

tomake accurate predictions in unexplored chemical/sequence spaces.

Similarly, increased democratization of ML and DL resources for

new antibiotic discovery will be instrumental in advancing antibi-

otic research toward our collective goals. ML approaches and tools

are becoming widely accessible171,172 even to those without strong

computational expertise. However, unlike some fields that have large

and reasonably well-controlled publicly available datasets, antibacte-

rial research is somewhat lacking in the quantity and methodological

transparency of easily accessible data. Open access to proprietary

datasets173 and the development of consortia174 to allow for the col-

lection of standardized antibacterial screening datasets for public use

will increase the probability of the success of ML approaches in new

antibiotic discovery. This should be a short-term priority for the field

that can position us for long-term success.
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